A. Sobel H. The Stratosphere. Dynamics, Transport, and Chemistry


author: A. Sobel H.

isbn: 9781118672303

10006.67 РУБ


Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 190. The Stratosphere: Dynamics, Transport, and Chemistry is the first volume in 20 years that offers a comprehensive review of the Earth's stratosphere, increasingly recognized as an important component of the climate system. The volume addresses key advances in our understanding of the stratospheric circulation and transport and summarizes the last two decades of research to provide a concise yet comprehensive overview of the state of the field. This monograph reviews many important aspects of the dynamics, transport, and chemistry of the stratosphere by some of the world's leading experts, including up-to-date discussions of Dynamics of stratospheric polar vortices Chemistry and dynamics of the ozone hole Role of solar variability in the stratosphere Effect of gravity waves in the stratosphere Importance of atmospheric annular modes This volume will be of interest to graduate students and scientists who wish to learn more about the stratosphere. It will also be useful to atmospheric science departments as a textbook for classes on the stratosphere.

14. Hecht J.H., Alexander M.J., Walterscheid R.L., Gelinas L.J., V incent R.A., MacKinnon A.D., W oithe J.M. Ozone-oxygen cycle — in the ozone layer. The ozone oxygen cycle is the process by which ozone is continually regenerated in Earth s stratosphere, all the while converting ultraviolet radiation into heat. In 1930 Sydney Chapman resolved the chemistry involved.

A. Sobel H. The Stratosphere. Dynamics, Transport, and Chemistry заказать дешево на сайте

University of Oxford, UK, World Scientific Publ., Singapore, London, 2001, 507 pp. - ISBN 981-02-4566-1 Atmospheric science involves three main sub-disciplines: radiation, chemistry, and dynamics. Many books have been written about each of these, and non-LTE (we shall come in a moment to what it means) plays a part in most o...

Eckermann, 2008; Hecht et al., 2009; Vincent, 2009; Y amashita et al., 2010; Perevalova et al. We use cookies to offer you a better experience, personalize content, tailor advertising, provide social media features, and better understand the use of our services. менные проблемы дистанционного зондирования Земли из к осмоса. 2007. Т. 4. № 2. С. 84–89.

31. Yiğit E., Medvedev A.S. Internal waves coupling processes in Earth’s atmosphere, Adv . Space Res ., 2015, V ol. middle atmosphere over Davis (69°S, 78°E), Antarctica // J. Geophys. Res. Atmos. 2015. V ol. 120. No. 10. Second Edition, John Wiley & Sons, Inc. , 2006, 1248 pp. - ISBN-10: 0-471-72017-8. Начало атмосферной химии как научной дисциплины восходит к 18 веку, когда были определены основные химические компоненты атмосферного воздуха: азот, кислород, водяной пар, углекислый газ, благородные газы. В конце девятнадцатого и в начале двадцатого веков в фокусе внимания оказались так называемые малые примесные газы атмосферы, присутствующие в концентрациях менее 1 молекулы на миллион молекул воздуха. Теперь мы знаем, что атмосфера содержит множество примесных газов, и что их роль несоразмеримо больше их малой концентрации. Примесные газы ответственны за такие явления как: городской фотохимический смог, кислотные дожди, истощение стратосферного озонового слоя, потенциальное изменение климата. The study of atmospheric chemistry as a scientific discipline goes back to the eighteenth century, when the principal issue was identifying the major chemical components of the atmosphere, nitrogen, oxygen, water, carbon dioxide, and the noble gases. In the late nineteenth and early twentieth centuries attention turned to the so-called trace gases, species present at less than 1 part per million parts of air by volume (1 mol per mole). We now know that the atmosphere contains a myriad of trace species, some at levels as low as 1 part per trillion parts of air. The role of trace species is disproportionate to their atmospheric abundance; they are responsible for phenomena ranging from urban photochemical smog, to acid deposition, to stratospheric ozone depletion, to potential climate change. Contents The Atmosphere. Atmospheric Trace Constituents. Chemical Kinetics. Atmospheric Radiation and Photochemistry. Chemistry of the Stratosphere. Chemistry of the Troposphere. Chemistry of the Atmospheric Aqueous Phase. Properties of the Atmospheric Aerosol. Dynamics of Single Aerosol Particles. Thermodynamics of Aerosols. Nucleation. Mass Transfer Aspects of Atmospheric Chemistry. Dynamics of Aerosol Populations. Organic Atmospheric Aerosols. Interaction of Aerosols with Radiation. Meteorology of the Local Scale. Cloud Physics. Atmospheric Diffusion. Dry Deposition. Wet Deposition. General Circulation of the Atmosphere. Global Cycles: Sulfur and Carbon. Climate and Chemical Composition of the Atmosphere. Aerosols and Climate. Atmospheric Chemical Transport Models. Statistical Models. Appendix. Index. Оператор Собеля основан на свёртке изображения небольшими сепарабельными целочисленными фильтрами в вертикальном и горизонтальном направлениях, поэтому его относительно легко вычислять. С другой стороны, используемая им аппроксимация градиента достаточно грубая, особенно это сказывается на высокочастотных колебаниях изображения.

Стильный автомобильный держатель в дефлектор Metal Age Gravity фирмы Baseus будет прекрасно смотреться в интерьере Вашего автомобиля. Mount Cook, New Zealand, on 13 July 2014 during the DEEPW A VE campaign // J. Geophys. Res. Atmos. 2015. In the paper we investigate the manifestation of large-scale and middle-scale atmospheric irregularities observed on stratosphere/mesosphere heights. We consider typical patterns of circulation in stratosphere and lower mesosphere which are formed due to a difference of air potential energy between equatorial and polar latitudes, especially in polar night conditions. On the base of ECMWF Era Interim reanalysis data we consider the dynamics of midlatitude winter jet-streams which transfer heat from low latitudes to polar region and which develop due to equator/pole baroclinic instabilities. We consider typical patterns of general circulation in stratosphere/lower mesosphere and reasons for creation of flaky structure of polar stratosphere. Also we analyze conditions that are favorable for splitting of winter circumpolar vortex during sudden stratosphere warming events and role of phase difference tides in this process. The analysis of vertical structure of the stratosphere wind shows the presence of regions with significant shear of horizontal velocity which favors for inducing of shear-layer instability that appears as gravity wave on boundary surface. During powerful sudden stratosphere warming events the main jet-stream can amplify these gravity waves to very high amplitudes that causes wave overturning and releasing of wave energy into the heat due to the cascade breakdown and turbulence. For the dynamics observed in reanalysis data we consider physical mechanisms responsible for observed phenomena.

The polar vortex refers to a region of the winter polar stratosphere characterized by high nearly zonal westerly winds and isolation from the rest of stratosphere. It is the isolation from the rest of the stratosphere and the extreme cold temperatures within the vortex that allows for cloud formation and the complex chemistry of rapid ozone loss to occur in late winter and early spring. The polar vortex extends from the tropopause, (8–11 km in altitude), to the stratopause (50–60 km in altitude). Above the stratopause the zonal winds reverse. The Southern Hemisphere (SH) polar vortex is much stronger than the Northern Hemisphere (NH) vortex due to the absence of large-scale waves – planetary waves – in the SH. Planetary waves disrupt the vortex producing a short period circulation reversal known as a Major Stratospheric Sudden Warming. Major sudden warmings occur about every other year during the NH winter, but, due to the lack of planetary wave activity, they are very rare in the SH winter. The only observed SH sudden warming occurred in 2002. The polar vortex forms in fall and persists through winter into spring at which point it breaks up giving rise to the easterly summer circulation. The breakup of the polar vortex in the spring is called the final warming. The final warming occurs near the spring equinox in the NH, but occurs 1–2 months later in the SH. There is good evidence that the Antarctic ozone depletion has produced to a more persistent SH polar vortex. The spring vortex breakup date is now late November rather than late October as was observed in the 1970–80s. National Oceanic And Amospheric Administration, National Aeronautics And Space Administration, United States Air Force, Washington, D.C. October 1976, NOAA-S/T 76-1562, 241 pp. The U.S. Standard Atmosphere, 1976, which is a revision of the U.S. Standard Atmosphere, 1962, was generated under the impetus of increased knowledge... sic frequency, wavelength, and vertical propagation direction, J. Atmos. Sci., 2005, V ol. 62, No. 1, pp. campaign // J. Geophys. Res. 2009. V ol. 114. No. D18. 123 p. doi:10.1029/2008JD011259. Matricardi M., McNally A.P ., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P. Chemistry // Geophys. Monogr. Ser . 2010. Vol. 190. P . 59–91. doi:10.1029/2009GM000924. 18. Labiztke K.G., van Loon H. The Stratospher e: Phenomena, History , and Relevance , NewY ork: Springer, 1999, 179 p. campaign, J. Geophys. Res., 2009, V ol. 114, No. D18, 123 p., doi:10.1029/2008JD011259.

Coupling between stratosphere/mesosphere circulation and dynamic processes in the ionosphere. by J.R. Holton, J. Pyle, and J.A. Curry. San Diego, Calif.: Academic, 2003. P. 1321–1328.

8. Baldwin M.P ., Holton J.R. Climatology of the stratospheric polar vortex and planetary wave breaking, J. Atmos.

25. Vincent R.A. The dynamics of the mesosphere and lower thermosphere: a brief review // Prog. Earth Planet Sci.

sic frequency, wavelength, and vertical propagation direction // J. Atmos. Sci. 2005. V ol. 62. No. 1. P . 125–142.

reanalyses, J. Geophys. Res., 2005, V ol. 110, No. D21, 109 p., doi:10.1029/2005JD006113.

limb-sounding temperatures // Geophys. Res. Lett. 2015. V ol. 42. P . 6860–6867. doi:10.1002/2015GL065234. Springer Science+Business Media, 2011, 225 pages SCIAMACHY, the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY, is a passive sensor for exploring the Earth’s atmosphere. It is part of the payload of the European Earth Observation mission ENVISAT, launched on 1 March 2002. SCIAMACHY observes abso...

A. Sobel H. The Stratosphere. Dynamics, Transport, and Chemistry заказать с доставкой в онлайн магазине


Guosheng Yin Clinical Trial Design. Bayesian and Frequentist Adaptive Methods
10006.67 РУБ
Foldable Chaise Lounge Chair 6 Color Adjustable Recliner Living Room Furniture Japanese Style Daybed Sleeper Sofa Armchair
10006.51 РУБ
Car ABS chrome Front Back rear Bumper tailgate pedal Strip trim plate lamp threshold 2pcs For Honda CRV CR-V 2012 2013 2014
10006.51 РУБ